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We prove almost-sure exponential localization of all the eigenfunctions and 
nondegeneracy of the spectrum for random discrete Schr6dinger operators on 
one- and quasi-one-dimensional lattices. This paper provides a much simpler 
proof of these results than previous approaches and extends to a much wider 
class of systems; we remark in particular that the singular continuous spectrum 
observed in some quasiperiodic systems disappears under arbitrarily small local 
perturbations of the potential. Our results allow us to prove that, e.g., for strong 
disorder, the smallest positive Lyapunov exponent of some products of random 
matrices does not vanish as the size of the matrices increases to infinity. 

KEY WORDS: 

1. I N T R O D U C T I O N  

Disordered systems are presently widely studied from the mathematical 
point of view. One of the challenging questions concerns the Anderson 
localization theory, which in mathematical terms amounts to studying the 
nature of the spectrum of random self-adjoint operators, such as for exam- 
ple a discrete Schr6dinger equation with a random potential, which is 
among condensed matter physicists the most popular model for describing 
the electron propagation in a disordered system. A brief survey of these 
problems can be found in Ref. 34, whereas Ref. 31 presents a very large 
bibliography on them. Mathematical reviews will be found in Refs. 6 and 3. 

One of the striking predictions of the theory was the prediction by 
Anderson (L) that for sufficiently large disorder all the states should be 
exponentially localized in any dimension. Localization at large disorder or 
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small enough energy for multidimensional systems has recently been 
proven or announced. (14"9'1~ 

For one- and quasi-one-dimensional systems, localization was first 
predicted by Mott and Twose (25) to occur for any energy and arbitrarily 
small disorder. Such a result for one-dimensional systems was 
mathematically proven in Refs. 16, 20, 27, 4, 8, 21, 5; it is sufficient to look 
at these papers to see that the proof of the present paper is much simpler, 
more general, and more illuminating. For quasi-one-dimensional systems 
(e.g., the infinite strip), localization was announced in Ref. 15 and also 
proven in Ref. 23, in a difficult proof, and for such systems our proof is 
spectacularly simpler and also yields the correct decay rate of eigen- 
functions, i.e., the smallest positive Lyapunov exponent. 

In this note we first get sufficient conditions ensuring the almost-sure 
exponential localization for one-dimensional Jacobi matrices as well as dis- 
crete Schr6dinger equations in a strip. As a result we will obtain that pure- 
point spectrum, exponential decay of eigenfunctions, and nondegeneracy of 
the spectrum are almost sure in a large class of one- and quasi-one-dimen- 
sional systems. We also show that the Green's function decays at infinity 
with the smallest Lyapunov exponent as a rate, which was proposed in 
Ref. 19 in a particular case. Finally, our work allows us to answer a conjec- 
ture difficult to attack directly: for classes of random systems at sufficiently 
strong disorder or low enough energy, the smallest Lyapunov exponent 
associated to the strip does not vanish as the section of the strip increases 
to infinity. 

The approach of the present paper is basically the following: let us 
consider for simplicity the one-dimensional case and let us study the 
equation H g  ~= Eg  t. We suppose that the associate Lyapunov exponent is 
nonzero and thus that all solutions of the equation H g  t =  Eg  t either decay 
or increase exponentially at + oe and similarly at - oo .  In order to get this 
property for almost all potential and spectrally almost all E, we use the fact 
that, under some regularity assumption on the distribution of the potential, 
the averaged spectral measure of the Hamiltonian is absolutely con- 
tinuously to the Lebesgue measure. (2~ From this fact, together with a 
very clarifying idea of Kotani, (17) implicity contained also in Ref. 5, it 
follows that for spectrally almost every E the generalized eigenfunctions, 
which are polynomially bounded on both sides, necessarily decay exponen- 
tially on both sides. In fact, it is easy to prove that one can define a Green's 
function almost everywhere in the spectrum and this in turn implies the 
nondegeneracy of the spectrum. For the case of the strip the same 
argument holds and directly yields that the eigenfunctions have an 
exponential rate of decay equal to or larger than the smallest Lyapunov 
exponent. This control, together with the property of exponential decay of 
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the eigenfunctions of random Schr6dinger operators on 2 a in the case of 
strong disorder or large enough energy proven in Ref. 9, shows that, in this 
case, the smallest positive Lyapunov exponent of the product of random 
transfer matrices does not vanish as the width of the strip goes to infinity. 

A proof of results analogous to ours and taking as we do inspiration 
from a recent work of Kotani (17) has been developed simultaneously in 
Refs. 33 and 28. On the other hand one-dimensional results have been also 
obtained in Ref. 12 in a different way, by using renormalization ideas to 
extend results from large to arbitrary disorder. 

Our approach deals with a much larger class of systems than previous 
ones, as is emphasized in Section 5 of this paper. In particular it can be 
applied to the cases of quasiperiodic potentials with arbitrarily small, 
absolutely continuous local perturbations, leading to pure point spectrum 
and exponentially decaying eigenfunctions as soon as the smallest 
Lyapunov exponent is positive; this shows that the known cases of coin- 
cidence of positive Lyapunov exponent and singular continuous spectrum 
are unstable under arbitrarily small local perturbations and that the 
corresponding singular continuous spectrum is not relevant for physics. 

In the following, we first set some definitions and assumptions; then 
we develop our approach to the exponential localization. In Section 4 we 
construct the Green's function and show the nondegeneracy of the spec- 
trum. In these first sections we work in a deterministic frame, in the sense 
that only a finite number of potentials are supposed to be random, the 
other ones being fixed and assumed to satisfy some properties which are 
known to be almost sure in most cases of interest. In the last section, 
dedicated to the description of some applications and extensions, we relate 
the results of the first sections to the different cases of random systems; we 
also show the boundedness from below of the smallest Lyapunov exponent 
when the width of the strip becomes infinite. 

2. THE SETTING 

Let A be a finite connected subset of Z d-l ,  where d is a positive 
integer. The cardinality of A is denoted [A[. We consider the lattice S =  
A • 7/; the one-dimensional case corresponds to [A[ = 1. We shall use the 
notation SEa,b 3 = A • [a, b]. Let g2 = ~s  be the set of the potentials V= 
[ V ( x ) ] x ~ s .  For V ~ 2  and ~u=[~U(x)]x~ s, the discrete Sehr6dinger 
operator H =  H v is defined by 

(H~')(x)  = ~ ~'(y) + V(x). ~'(x) 
ly xl l 



378 Delyon, L6vy, and Souillard 

where the sum runs on the sites y neighbors of x, and we set for instance 
free (Dirichlet) boundary conditions. H is a self-adjoint operator on 12(S) 
and admits as a core the set of those ~P with finite support. In the following 
we denote for simplicity ~u n the vector [~U(a, n)]a~A restriction of ~ to the 
slice with abscissa n and similarly for V; if gt is a solution of the eigenvalue 
problem H~u= E~P then gt satisfies an equation of the form (~un+ 1, ~u) = 
Mn" (~un, 7tn_ 1); Mn is a 2 ]A] x 2 [A[ matrix called transfer matrix, and is a 
function of E -  Vn. 

In the following, we fix an interval B of R and we denote by L the nor- 
malized Lebesgue measure on B. Our assumptions for Sections 3 and 4 on 
the potential are the following. 

Hypothesis H1. The potentials outside S[o,l  ] a r e  given and there 
exist positive constants e+ and ~_ such that for L-a.e. E there are two IAI- 
dimensional ("contracting") subspaces W+ and W of [R 21AI such that 

we W+ ~ l i m  sup (1/n).log t I M , M n _ I ' " M 2 "  wH ~ - ~ +  
n ~  §  

w e W  ~ l i m s u p ( l / l n l ) ' l o g H ( M  I ' " M , + I " M n )  - l ' w l h ~ - e -  
n ~  oo  

Remark I. Note that the two subspaces W+ and W "live," respec- 
tively, on the slices S[I,Z] and S[_1,o]. 

Remark 2. The symplectic nature of the transfer M,'s implies that, 
under H1, 

wr W+ ~ l i m  inf ( l /n) .  log [[Mn'Mn_ 1 . . .M2.wil  >~+ 
n ~  t o o  

w ~ W  ~ l i m i n f ( 1 / [ n l ) ' l o g  H(M_~" 'M~+~M~) l.wll>~ 

Hypothesis H2. The potentials o n  S[o,1 ] are random variables 
with independant distributions which have bounded densities [P,]s~SEo,~l 
with respect to the Lebesgue measure. 

Remark. In Sections 3 and 4 below, "a.e. V" will thus hold for 
"almost every realization of [- V(x)]x~ st0,11." 

3. THE EXPONENTIAL LOCALIZATION 

We are in position to state the first theorem. 

Theorem 1. Let H1 and H2 be true. Then H V has almost surely 
only pure point spectrum in B and the corresponding eigenvectors decay 
exponentially with rates at least ~_+ at __ oo. 
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Remark. We prove in the next section that the spectrum is non- 
degenerate. 

Proof. Let V be given on S. Let PV be the resolution of the identity 
of H v. For x~S,  let Ix)  denote the vector of the canonical basis of 12(S) 
associated to x. Let ax be the measure (xl pv Ix) (note that ax depends 
on V). Let a=Y',x~sE0~l ax. It is well known from spectral theory that for 
any ~ e  12(S), (~1 P~ [ ~ )  is absolutely continuous with respect to a. In 
particular H has pure point spectrum if and only if a is a point measure. By 
this remark, Theorem 1 is a mere consequence of the following 
Proposition 2. | 

Proposition 2. Let H1 and H2 be true. Let x~S[o.~] be given. 
Then, almost-surely, ~r~ is a point measure and, for a~-a.e. E in B L the 
corresponding eigenvectors decay exponentially with rates least c~ + at _+ oo. 

Proof. The existence of the subspaces W+ and W_ considered in H1 
does not depend on the value of V(x); thus the existence of such subspaces 
is known for all E except a set of zero L measure which does not depend 
on V(x). Thus, for L-a.e. E and any V(x), any solution of H~u = E~U either 
increases or decreases exponentially at + oo with rate at least c~+ and 
similarly at - oo with rate c~_. 

In order to be in position to achieve the next step, we show that the 
spectral measure, averaged with respect to the potential, is in fact 
absolutely continuous with respect to the Lebesgue measure L. This is con- 
tained in Proposition 3, the proof of which is given later. 

Proposition 3. Let H2 be true. Let x~SEo,1 ] be given. Then the 
measure S~ax(dE)px(v)dv  is absolutely continuous with respect to 
L(dE), where v stands for V(x). 

This proposition shows that if a set of energies of V(x) is of zero L 
measure then for a.e. V(x) it has zero a t  measure. We can now use the idea 
emphasized by Kotani, (~TJ namely, that by Proposition 3, a property true 
for L-a.e. E and independent of V(x) (in our case the exponential behavior 
of all the solutions of H g  t = E~ u) is true for a,e. value of V(x) and ax-a.e. E 
in B. Thus, for a.e. V(x) and ax-a.e. E, necessarily the polynomially boun- 
ded solutions of H~U=E~ u decay exponentially at infinity, with rates at 
least e+_. On the other hand, for any value of V(x), it follows from spectral 
theory that, for a-a.e. E and thus in particular for ax-a.e. E in B, the 
generalized eigenfunctions of H for the generalized eigenvalue E are 
polynomially bounded; thus they decay exponentially at infinity, with rates 
at least ~_+. A fortiori they are in 12(S) and ~ is pure point. This ends the 
proof of Proposition 2. II 
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We are now left with proving Proposition 3, as announced above. It is 
based on an argument of Ref. 35. 

Proo[ o[ Proposition 3. Let V be fixed; consider the finite system 
SE N,N3 ( N >  1) and denote PN the resolution of the identity of the restric- 
tion H N of H v to S[_ N,N]. Let a N = ( xl P N I x ) .  For  N ~  oo, a N converges 
weakly as a measure to aN. But a N can be written explicitly: 

aN(de ) = ~ ~)(E - Ek) (~k(X)) 2 de  
k 

where the sum on k runs on a basis of normed eigenvectors ~k of H N, the 
corresponding eigenvalues being denoted Ek. If ~k(X)----0, ~g remains an 
eigenvector for the same eigenvalue as V(x) varies and does not contribute 
to a N. We can thus restrict the sum in aN to those k such that 7 tk(x)# 0 
[-for all V(x)]. In the case when there is a degenerated eigenvalue of 
degeneracy n, we choose an orthogonal basis of the eigenspace such that at 
least n - 1  vectors take the value 0 at site x. Thus we can suppose in the 
following that in the above expression of aN(de) no ~Vk(x) is 0 and that the 
eigenvalues Ek are nondegenerate. Each E k is a monotonous function of 
V(x) and, as noted in Ref. 8, we have 

dEk/dv = [ ~k(X)] a 

Moreover, as it is easy to see, the two sets of eigenvalues of H obtained, 
respectively, when V ( x ) ~  -oo and V(x)-~ +co are identical except for 
the eigenvalue corresponding in the limit to the vector Ix) ,  which goes to 

- oo in one case and to + oo in the other. This means that, for any given E 
except a finite set, one and only one among the eigenvalues Ek crosses the 
value E as V(x) goes from - oo to + oo. In turn this implies the existence 
of disjoint open sets Ok of N such that the applications V(x) ~ Ek are dif- 
feomorphisms from il~ to O k. This allows to make the following change of 
variables 

= f f ( E )  d E ~  # [v6 ~: Ek(v) = E] 
k 

= f~ f ( E )  de  
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where f is any continuous function with compact support and v stands for 
V(x). Thus in view of the expression for aN(dE), we get 

f~ px(v) dv aN(dE) <, blpxll dE oo " 
E N  

and by the weak convergence of aN to ax 

f= p~(v) ,iv ax(de) <~ Ilpxll de I 
~ R  

4. BEHAVIOR OF THE GREEN'S FUNCTION AND 
NONDEGENERACY OF THE SPECTRUM 

In this section we prove the nondegeneracy of the spectrum, under 
general assumptions. In order to get this result, we first show that the 
Green's function is defined almost everywhere on the spectrum. 

The following proposition is a consequence of the fact that H is a self- 
adjoint operator on/2(8): 

Proposition 4. Let H1 be true. Then, for any V, the subspaces 
defined in H1 are such that, for L-a.e. E, M1  1 �9 W+ and Mo'  W are sup- 
plementary subspaces of RzlAI, where M '  W is the image of the subspace W 
by the matrix M. 

Proof. Let [V(x)]x~sEo.ll be given. For  L-a.e. E the intersection of 
these subspaces is {0}, otherwise the solutions of HgJ=Eg ~ such that 
(gt 1, ~Uo) belongs to M f  ~. W+c~Mo" W would be square integrable 
(since they decay exponentially) eigenfunctions of H and exist for a set of 
values of E of positive Lebesgue measure; this is not possible since they 
would constitute a noncountable set of orthogonal vectors of [2(8). As W+ 
and W are [A] dimensional, this proves these subspaces generate 
N21AI. I 

Proposition 4 allows us to build the Green's function of H and to 
prove its exponentially decaying behavior at infinity: 

Theorem 5. For  L-a.e. V the Green's function G(x, y; E) exists as 
an unbounded operator admitting as a domain the set of the functions with 
finite support and it satisfies 

Vx, lim sup (1/[yl)" log IG(x, y; E)l ~< -c~+ 

Proof. Let E and x be given in the slice of abscissa 0: x = (a, 0) and 
Ix) = ( la) ,  10)); we look for a vector qSEl2(S) such that ( H - E ) .  qs= [x); 

822/4l,,'3-4-3 
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this amounts to finding an appropriate (~/,~, G0), since this s sufficient to 
generate r By H1, we know that a sufficient condition of exponential 
decay of q~n is that 

(q~l -  [a),  q~0) ~ M0" W and ((~1, qS0)~ (M1) -1" W+ 

Proposition 4 tells us that for any V and L-a.e. E, and thus, by Fubini's 
theorem, for L-a.e. E and for a.e. V, such a (q~l, q~o) exists and is unique. 
(Notice that the solution q~ is nonzero even if q5 0 and qs~ are zero). We 
denote the corresponding exponentially decaying vector q~ by G(x, "). For 
an arbitrary x~  S, x = (a', n) (say, n > 1 for simplicity), the same construc- 
tion can be performed provided one can find (q~,+ ~, q~,) such that 

and 

(qSn+ 1 -- [a'),  ~n)~ Mn ' "  M1 " M o " W 

(~n+l, ~n)~Mn+l "M, ' "M2"  W+. 

As the Mi's are invertible, such a (~n+ ~, #n) still exists and is unique. Thus 
we get, for L-a.e. E, for a.e. V, the existence of functions [G(x, ")]x~S such 
that ( H - - E ) G ( x , O ) = I x ) .  It is then sufficient to write the product 
(G(x, - ) [  H - E I G ( y ,  "))  to see that G(x, y )=G(y ,x) .  The exponential 
decay of the functions G(x, ") follows by construction. | 

We come now to the nondegeneracy of the spectrum. 

T h o o r o m  6. Let H1 and H2 be true; then, for a.e. potential, every 
eigenvalue is nondegenerate. 

Proof. Choose x~SEo,l~; fix E and V such that the conclusions of 
Theorem 5 are valid, and a real number v. Suppose that E is an eigenvalue 
of H - v ' l x ) ( x l  and let ~u be a corresponding normed eigenvector. Let us 
write the scalar product of G(y, ") with ( H - v .  I x ) ( x [ - E ) ~ .  As ~u and 
G(y, ") decay exponentially at infinity this expression makes sense so that 
we get 

~(y) = v" G(x, y)" ~(x) 

which proves that such a ~g is unique. In other terms, for L-a.e. E, for a.e. V 
and for any value of v, if E is an eigenvalue of H - v  [x)(x[ then the 
corresponding eigenvector is unique; let us denote this property 
P(E, V+v [x ) (x ] ) .  If we denote V* the restriction of the potential to 
S \  {x} we get that P(E, V) is true, for L-a.e. E, for a.e. V* and indepen- 
dently of the value of V(x). By Fubini's theorem, it is also true for a.e. V*, 
for L-a.e. E and for any V(x); by Proposition 3, it remains true for a.e. V = 
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I-V*, V(x)], for o-x-a.e.E. As x is arbitrary, P(E, V) is true for a.e. V, for 
a-a.e.E. | 

In the next section we prove (Theorem8) tha t ,  under some 
assumption of strong disorder, the smallest Lyapunov exponent of the 
product [1 M,  does not vanish as LA] increases. The following Proposition, 
which is a consequence of the construction of the Green's function perfor- 
med in the proof of Theorem 5, relates the smallest Lyapunov exponent to 
the Green's function. 

Proposition 7. Suppose that, in addition to H1, there is a function 
~min(E), called smallest Lyapunov exponent, such that for L-a.e. E 

3w_+ e W_+ s.t. lira (1/Inl) ' log liMn'wll = -~min(E) 

w e W + ~  lim (1/In])'log]bm"'w]l<<.-~min(E) 

where M ~ stands for M, - . -  M3' M2 if n > 0 and for (M 1 ' M 2""  Mn)-  
if n < 0. Then, for L-a.e. E, for a.e. V, there is a site x e S[0, 1 ] such that 

lira (1/ iyl) . log ]G(x, y)] = -~mi.(E) 
y ~ •  

Proof. Consider the family [G(x,.)]x~SEo,l~ constructed in 
Theorem 5. As (H-E) .G(x ,  . ) =  ix)  these are 2 ]AI independent vectors. 
By construction, their restrictions to the positive abscissas lie in the same 
1At-dimensional subspace, and similarly for their restrictions to the 
negative abscissas; then they generate these spaces and in particular at least 
one among them decays at + ~ with rate ~ i , (E ) .  ] 

5. E X T E N S I O N S - - A P P L I C A T I O N S  

In the previous sections, the potentials outside the slice S[o,1] were 
fixed. The results we obtained provide us with tools to deal with many 
physical situations; the purpose of this section is to describe the 
applications of our results to random and quasiperiodic potentials. 

5.1. Discussion of Hypothes is  H1 

In many cases of interest, the potentials are supposed to be random in 
the whole system S, and H1 (which is anyway independent of the poten- 
tials on S[o,1]) can be shown to be true for almost every realization of the 
potential outside the slice. 
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For instance, if the lattice is Y (i.e., ]AI = 1 ), it has been proven (18'3~ 
that the Lyapunov exponent of the product F I M ,  is positive (for 
Lebesgue-a.e. E) as soon as the sequence of ergodic random variables Vn is 
nondeterministic. Similar properties are expected when A is any finite set; 
in the case of the strip (i.e., A c 7/), Lacroix (~2) has proven the positivity of 
the smallest Lyapunov exponent when the V(x)'s are independent iden- 
tically distributed (i.i.d.) random variables, under some weak assumptions 
on their distribution. In these cases, H1 actually holds for any E, for a.e. 
potential. If the V(x)'s are i.i.d, random variables, and if the smallest 
Lyapunov exponent is positive, Proposition 4 and the assumptions of 
Proposition 7 are mere consequences of Oseledec's theorem. 

In these cases, H1 is true for a.e. configuration of the potential outside 
the slice, so that our results (localization, point spectrum, nondegeneracy) 
remain true for a.e. configuration of V on the whole system. 

5.2. Discussion of the Hypothesis H2 

Hypothesis H2 was stated in the above form for simplicity. In fact it 
can easily be weakened and replaced by the following statement: 

Hypothesis H2'. The potentials o n  S[0,1 ] are random variables 
with an absolutely continuous joint distribution with respect to the product 
of the Lebesgue measures 1-[,~ s[0.~] dV(s). 

The hypothesis H2 is only used in the proof of Proposition 3, where 
the potentials except V(x) are fixed, so that Px can be replaced everywhere 
by a conditional expectation p(V(x) l[V(S)]s~S[o.~]\~x}). Moreover, the 
boundedness of this distribution is not necessary, since, if it is not the case, 
then for any positive e and with probability 1 - e ,  V(x) has a bounded den- 
sity and all conclusions are valid. 

In the cases where the potentials outside S[o.~] are given a probability 
distribution, the distribution considered in H2' must be considered as con- 
ditioned by the potentials [V(s)]scs[o, ll outside the slice. In particular, in 
the ergodic case, it is enough to require that this distribution have a part 
absolutely continuous with respect to the Lebesgue measure; indeed, the 
above method implies in this case that localization occurs with positive 
probability, and it is known by ergodicity that it can occur only with 
probability 0 or 1 on the potential V. (2~ 

5.3. Lower Bound on the Smallest  Lyapunov Exponent  

For sufficiently strong disorder or at low enough energy, it is expected 
that the Green's function exhibits (Lebesgue-almost everywhere on the 
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spectrum) an exponential decay at infinity with a rate uniformly bounded 
below as [AI increases. In some particular cases, this follows, as shown in 
Ref. 9, from the results of Ref. 13. This bound on the decay rate, together 
with Proposition 7, gives information on the behavior of the smallest 
Lyapunov exponent ~min as the section A increases to 7/J- ~: 

T h e o r e m  8. Suppose V is sufficiently random or E low enough in 
the sense described above. Then the smallest Lyapunov exponent of the 
transfer matrices product M , . M ,  I " ' M ~  remains positively bounded 
below as A ..~ Z d 1. 

Proof. Let E be given in the spectrum. By Proposition 7, we know 
that, with probability 1, some G(x, .) decays at + ~ with rate amin(E). By 
Ref. 9 we know that, with full probability, it is possible for any x to con- 
struct a function Gx such that ( H - E ) ' G x = J x )  and to prove that it 
decays at infinity with an exponential rate bounded below by a positive 
constant independent of the geometry of IA[. Almost surely, E is not an 
eigenvalue for H, so that G(x, .) and Gx coincide; thus 0~min(E ) is bounded 
below by a positive constant. | 

5.4. Perturbations of Deterministic Systems 

It is known that some deterministic systems exhibit positive Lyapunov 
exponents, which means that they satisfy H1, but give rise to singular con- 
tinuous spectrum. One of the known examples is the one-dimensional 
system where the potential is given by V(n) = 2" cos[27r(c~n + 0)], 2 > 2 and 
c~ LiouvilleJ 2) A consequence of our results is that, under an arbitrarily 
small continuous perturbation of the potentials on the slice, the singular 
continuous spectrum is almost surely replaced by a pure point spectrum 
with eigenfunctions decaying at least with the Lyapunov exponent as a 
rate! 

5.5. Other Possible Asymptotic Behaviors 

The exponential nature of the decay assumed in H1 (related to the 
exponential increase of the norm of the matrices product) is not essential; 
neither is it universal, and some models give rise to different asymptotic 
behaviors. For instance, a faster than exponential decay of the matrices 
product is believed to occur for self-similar potentials, with a behavior 
HM,,' M,, ~... M~l["~n'"; this behavior is related to the discretization of 
our model and, in continuous models, behaviors (e.g., of the Green's 
function) in e ''~, ~ > 1, are expected. On the contrary, if the random poten- 
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tial decays at infinity like 1/Inj ~ the matrices product is found to increase 
like exp(c. Inl ~ 2~) for 0 < e <  1/2. (29'11) 

In these two cases, if the analogs of H1 could be recovered one would 
find the eigenstates to decay like n c.n [resp. e x p ( - c .  In l~-2=)] ;  this latter 
behavior has been proven previously in Ref. 29. 

In Section 3 the polynomial bound on the generalized eigenstates 
allowed us to deduce that, as they exponentially either increase or decay, 
they necessarily decay. Actually, one knows that the generalized eigen- 
functions of H are indeed bounded by C" ]n] 1/2+~ (for any e > 0). Thus the 
exponential decay of IlMn "Mn_ ~ " "  M2" wH in H1 can be replaced by any 
decay faster than Inl (1/2+~), leading to the same asymptotic behavior for 
the eigenfunctions (and in particular to pure point spectrum). The same 
behavior holds for the Green's functions; the nondegeneracy of the spec- 
trum follows also: the behaviors of the Green's functions and of the eigen- 
functions are sufficient to ensure the convergence of the scalar product 
(G(y, ")1 (H-v" [ x ) ( x l - E )  [gt) in the proof of Theorem 6. 

A more detailed analysis allows us to consider the cases when the 
decay of IlMn ' M n - 1 '  " "  M2' wl[ in H1 is weaker than In1-1/2, for instance 
like [nl ~, 0 < e <  1/2; in these cases one guesses continuous spectrum, but 
we still apply our method to describe the behavior of the generalized eigen- 
functions. Indeed the spectral theorem yields that the generalized eigen- 
functions cannot increase faster than Inl ~ for 6 > 0  (in the sense that 
~ + ~ u ~ + ~ > C . l n l 6 ) .  Now, as in the proof of Theoreml ,  using 
Proposition 3 and the Wronskian property we get that, for a.e. potential, 
for a-a.e, value of E the corresponding generalized eigenfunctions 
necessarily increase like In[ ~ or decrease like In[-~ at infinity, so that for a.e. 
potential, a-a.e. E, they decay like In[-~; thus the spectrum is continuous. 
On the other hand, by Fubini's theorem, for Lebesgue almost every E the 
solutions of H g  t =  E~U behave like In[ ~ at + o% - oo or both; consequently 
the measure ~r is singular with respect to the Lebesgue measure. (26) This 
provides a case where a singular continuous spectral measure occurs with 
probability 1, although distributions of the potentials are continuous. A 
behavior in Inl ~ of the matrices product is proven in a weaker sense if the 
random potential V~ decays at infinity like ]nl-X/2; ( m  the singular con- 
tinuous spectrum has been proven for this case (7) by other means since the 
weak version of H1 available in this case does not provide the splitting 
necessary to predict the behavior of the generalized eigenstates. 
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